extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D8)⋊1C22 = D8⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):1C2^2 | 128,916 |
(C2×D8)⋊2C22 = C23⋊3D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):2C2^2 | 128,1918 |
(C2×D8)⋊3C22 = C24.121D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):3C2^2 | 128,1920 |
(C2×D8)⋊4C22 = C24.124D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):4C2^2 | 128,1923 |
(C2×D8)⋊5C22 = C42.263D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):5C2^2 | 128,1937 |
(C2×D8)⋊6C22 = C42.406C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):6C2^2 | 128,1952 |
(C2×D8)⋊7C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):7C2^2 | 128,2006 |
(C2×D8)⋊8C22 = D4×D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):8C2^2 | 128,2011 |
(C2×D8)⋊9C22 = D4⋊4D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):9C2^2 | 128,2026 |
(C2×D8)⋊10C22 = C42.53C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):10C2^2 | 128,2050 |
(C2×D8)⋊11C22 = D8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 8+ | (C2xD8):11C2^2 | 128,922 |
(C2×D8)⋊12C22 = Q16.10D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4+ | (C2xD8):12C2^2 | 128,924 |
(C2×D8)⋊13C22 = C24.177D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | | (C2xD8):13C2^2 | 128,1735 |
(C2×D8)⋊14C22 = C24.104D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):14C2^2 | 128,1737 |
(C2×D8)⋊15C22 = C24.105D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):15C2^2 | 128,1738 |
(C2×D8)⋊16C22 = C42.444D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):16C2^2 | 128,1770 |
(C2×D8)⋊17C22 = C42.14C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):17C2^2 | 128,1773 |
(C2×D8)⋊18C22 = M4(2)⋊14D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):18C2^2 | 128,1787 |
(C2×D8)⋊19C22 = M4(2).37D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 8+ | (C2xD8):19C2^2 | 128,1800 |
(C2×D8)⋊20C22 = M4(2)⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):20C2^2 | 128,1883 |
(C2×D8)⋊21C22 = M4(2)⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):21C2^2 | 128,1887 |
(C2×D8)⋊22C22 = C24.125D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):22C2^2 | 128,1924 |
(C2×D8)⋊23C22 = C24.127D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):23C2^2 | 128,1926 |
(C2×D8)⋊24C22 = C24.130D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):24C2^2 | 128,1929 |
(C2×D8)⋊25C22 = C42.275D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):25C2^2 | 128,1949 |
(C2×D8)⋊26C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):26C2^2 | 128,1956 |
(C2×D8)⋊27C22 = D8⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):27C2^2 | 128,1996 |
(C2×D8)⋊28C22 = SD16⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):28C2^2 | 128,1997 |
(C2×D8)⋊29C22 = D8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):29C2^2 | 128,2004 |
(C2×D8)⋊30C22 = D8⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 8+ | (C2xD8):30C2^2 | 128,2020 |
(C2×D8)⋊31C22 = D8○D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 4+ | (C2xD8):31C2^2 | 128,2024 |
(C2×D8)⋊32C22 = C42.474C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8):32C2^2 | 128,2057 |
(C2×D8)⋊33C22 = D4○D16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4+ | (C2xD8):33C2^2 | 128,2147 |
(C2×D8)⋊34C22 = D8⋊C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 8+ | (C2xD8):34C2^2 | 128,2317 |
(C2×D8)⋊35C22 = C2×C22⋊D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):35C2^2 | 128,1728 |
(C2×D8)⋊36C22 = C2×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):36C2^2 | 128,1732 |
(C2×D8)⋊37C22 = C24.103D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):37C2^2 | 128,1734 |
(C2×D8)⋊38C22 = C4○D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):38C2^2 | 128,1740 |
(C2×D8)⋊39C22 = (C2×D4)⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):39C2^2 | 128,1744 |
(C2×D8)⋊40C22 = C2×C4⋊D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):40C2^2 | 128,1761 |
(C2×D8)⋊41C22 = C42.18C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):41C2^2 | 128,1777 |
(C2×D8)⋊42C22 = C2×C8⋊7D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):42C2^2 | 128,1780 |
(C2×D8)⋊43C22 = C24.144D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):43C2^2 | 128,1782 |
(C2×D8)⋊44C22 = C2×C8⋊4D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):44C2^2 | 128,1876 |
(C2×D8)⋊45C22 = C22×D16 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):45C2^2 | 128,2140 |
(C2×D8)⋊46C22 = C2×C8⋊2D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):46C2^2 | 128,1784 |
(C2×D8)⋊47C22 = C24.110D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):47C2^2 | 128,1786 |
(C2×D8)⋊48C22 = C2×D4.4D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):48C2^2 | 128,1797 |
(C2×D8)⋊49C22 = M4(2).10C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | 4 | (C2xD8):49C2^2 | 128,1799 |
(C2×D8)⋊50C22 = C2×C8⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8):50C2^2 | 128,1880 |
(C2×D8)⋊51C22 = M4(2)⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):51C2^2 | 128,1886 |
(C2×D8)⋊52C22 = C2×C16⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):52C2^2 | 128,2144 |
(C2×D8)⋊53C22 = D16⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | 4 | (C2xD8):53C2^2 | 128,2146 |
(C2×D8)⋊54C22 = C22×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):54C2^2 | 128,2310 |
(C2×D8)⋊55C22 = C2×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):55C2^2 | 128,2312 |
(C2×D8)⋊56C22 = C2×D4○D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):56C2^2 | 128,2313 |
(C2×D8)⋊57C22 = C2×D4○SD16 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8):57C2^2 | 128,2314 |
(C2×D8)⋊58C22 = C8.C24 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | 4 | (C2xD8):58C2^2 | 128,2316 |
(C2×D8)⋊59C22 = C22×C4○D8 | φ: trivial image | 64 | | (C2xD8):59C2^2 | 128,2309 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D8).1C22 = Q16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).1C2^2 | 128,917 |
(C2×D8).2C22 = D8⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).2C2^2 | 128,938 |
(C2×D8).3C22 = Q16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).3C2^2 | 128,939 |
(C2×D8).4C22 = Q16.5D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).4C2^2 | 128,943 |
(C2×D8).5C22 = C16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).5C2^2 | 128,947 |
(C2×D8).6C22 = C16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).6C2^2 | 128,949 |
(C2×D8).7C22 = C16⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).7C2^2 | 128,950 |
(C2×D8).8C22 = C16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).8C2^2 | 128,952 |
(C2×D8).9C22 = C22.D16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).9C2^2 | 128,964 |
(C2×D8).10C22 = C23.49D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).10C2^2 | 128,965 |
(C2×D8).11C22 = C23.19D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).11C2^2 | 128,966 |
(C2×D8).12C22 = C4.4D16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).12C2^2 | 128,972 |
(C2×D8).13C22 = C8.22SD16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).13C2^2 | 128,974 |
(C2×D8).14C22 = C8.12SD16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).14C2^2 | 128,975 |
(C2×D8).15C22 = C8.13SD16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).15C2^2 | 128,976 |
(C2×D8).16C22 = C4⋊D16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).16C2^2 | 128,978 |
(C2×D8).17C22 = C16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).17C2^2 | 128,980 |
(C2×D8).18C22 = C8.21D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).18C2^2 | 128,981 |
(C2×D8).19C22 = C16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).19C2^2 | 128,982 |
(C2×D8).20C22 = C8.7D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).20C2^2 | 128,983 |
(C2×D8).21C22 = C4.142+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).21C2^2 | 128,1931 |
(C2×D8).22C22 = C4.182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).22C2^2 | 128,1935 |
(C2×D8).23C22 = C42.265D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).23C2^2 | 128,1939 |
(C2×D8).24C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).24C2^2 | 128,1943 |
(C2×D8).25C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).25C2^2 | 128,1944 |
(C2×D8).26C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).26C2^2 | 128,1957 |
(C2×D8).27C22 = C42.293D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).27C2^2 | 128,1977 |
(C2×D8).28C22 = C42.295D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).28C2^2 | 128,1979 |
(C2×D8).29C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).29C2^2 | 128,1982 |
(C2×D8).30C22 = C4.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).30C2^2 | 128,1989 |
(C2×D8).31C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).31C2^2 | 128,1994 |
(C2×D8).32C22 = D8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).32C2^2 | 128,2005 |
(C2×D8).33C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).33C2^2 | 128,2009 |
(C2×D8).34C22 = SD16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).34C2^2 | 128,2014 |
(C2×D8).35C22 = Q16⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).35C2^2 | 128,2019 |
(C2×D8).36C22 = C42.466C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).36C2^2 | 128,2033 |
(C2×D8).37C22 = C42.470C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).37C2^2 | 128,2037 |
(C2×D8).38C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).38C2^2 | 128,2040 |
(C2×D8).39C22 = C42.44C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).39C2^2 | 128,2041 |
(C2×D8).40C22 = Q8⋊5D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).40C2^2 | 128,2123 |
(C2×D8).41C22 = C42.528C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).41C2^2 | 128,2126 |
(C2×D8).42C22 = C42.530C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).42C2^2 | 128,2128 |
(C2×D8).43C22 = C42.532C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).43C2^2 | 128,2134 |
(C2×D8).44C22 = D16⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 8+ | (C2xD8).44C2^2 | 128,913 |
(C2×D8).45C22 = Q16.D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).45C2^2 | 128,925 |
(C2×D8).46C22 = D8.3D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).46C2^2 | 128,926 |
(C2×D8).47C22 = C8.3D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).47C2^2 | 128,944 |
(C2×D8).48C22 = D8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 4+ | (C2xD8).48C2^2 | 128,945 |
(C2×D8).49C22 = D4.3D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4+ | (C2xD8).49C2^2 | 128,953 |
(C2×D8).50C22 = D4.5D8 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).50C2^2 | 128,955 |
(C2×D8).51C22 = M5(2).C22 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 16 | 8+ | (C2xD8).51C2^2 | 128,970 |
(C2×D8).52C22 = (C2×Q8)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).52C2^2 | 128,1742 |
(C2×D8).53C22 = C42.211D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).53C2^2 | 128,1768 |
(C2×D8).54C22 = C42.446D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).54C2^2 | 128,1772 |
(C2×D8).55C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).55C2^2 | 128,1774 |
(C2×D8).56C22 = M4(2)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).56C2^2 | 128,1794 |
(C2×D8).57C22 = C42.227D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).57C2^2 | 128,1841 |
(C2×D8).58C22 = C42.229D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).58C2^2 | 128,1843 |
(C2×D8).59C22 = C42.232D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).59C2^2 | 128,1846 |
(C2×D8).60C22 = C42.233D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).60C2^2 | 128,1847 |
(C2×D8).61C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).61C2^2 | 128,1857 |
(C2×D8).62C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).62C2^2 | 128,1885 |
(C2×D8).63C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).63C2^2 | 128,1905 |
(C2×D8).64C22 = C42.388C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).64C2^2 | 128,1908 |
(C2×D8).65C22 = C42.257D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).65C2^2 | 128,1912 |
(C2×D8).66C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).66C2^2 | 128,1915 |
(C2×D8).67C22 = C42.261D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).67C2^2 | 128,1916 |
(C2×D8).68C22 = C4.2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).68C2^2 | 128,1930 |
(C2×D8).69C22 = C4.192+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).69C2^2 | 128,1936 |
(C2×D8).70C22 = C42.271D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).70C2^2 | 128,1945 |
(C2×D8).71C22 = C42.272D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).71C2^2 | 128,1946 |
(C2×D8).72C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).72C2^2 | 128,1951 |
(C2×D8).73C22 = C42.407C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).73C2^2 | 128,1953 |
(C2×D8).74C22 = C42.299D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).74C2^2 | 128,1983 |
(C2×D8).75C22 = C42.301D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).75C2^2 | 128,1985 |
(C2×D8).76C22 = C42.304D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).76C2^2 | 128,1988 |
(C2×D8).77C22 = C42.26C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).77C2^2 | 128,1991 |
(C2×D8).78C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).78C2^2 | 128,1995 |
(C2×D8).79C22 = SD16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).79C2^2 | 128,2000 |
(C2×D8).80C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).80C2^2 | 128,2003 |
(C2×D8).81C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).81C2^2 | 128,2007 |
(C2×D8).82C22 = D8○SD16 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).82C2^2 | 128,2022 |
(C2×D8).83C22 = C42.41C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).83C2^2 | 128,2038 |
(C2×D8).84C22 = C42.42C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).84C2^2 | 128,2039 |
(C2×D8).85C22 = C42.54C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | | (C2xD8).85C2^2 | 128,2051 |
(C2×D8).86C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).86C2^2 | 128,2053 |
(C2×D8).87C22 = C42.475C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).87C2^2 | 128,2058 |
(C2×D8).88C22 = C42.481C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).88C2^2 | 128,2064 |
(C2×D8).89C22 = C42.59C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).89C2^2 | 128,2077 |
(C2×D8).90C22 = C42.61C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).90C2^2 | 128,2079 |
(C2×D8).91C22 = C42.507C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).91C2^2 | 128,2098 |
(C2×D8).92C22 = C42.511C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).92C2^2 | 128,2102 |
(C2×D8).93C22 = C42.514C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).93C2^2 | 128,2105 |
(C2×D8).94C22 = C42.517C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).94C2^2 | 128,2108 |
(C2×D8).95C22 = C42.72C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).95C2^2 | 128,2129 |
(C2×D8).96C22 = C42.74C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).96C2^2 | 128,2131 |
(C2×D8).97C22 = C42.531C23 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 64 | | (C2xD8).97C2^2 | 128,2133 |
(C2×D8).98C22 = D4○SD32 | φ: C22/C1 → C22 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).98C2^2 | 128,2148 |
(C2×D8).99C22 = C2×C2.D16 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).99C2^2 | 128,868 |
(C2×D8).100C22 = C23.24D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).100C2^2 | 128,870 |
(C2×D8).101C22 = C23.39D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).101C2^2 | 128,871 |
(C2×D8).102C22 = C23.40D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).102C2^2 | 128,872 |
(C2×D8).103C22 = C4×D16 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).103C2^2 | 128,904 |
(C2×D8).104C22 = C4×SD32 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).104C2^2 | 128,905 |
(C2×D8).105C22 = SD32⋊3C4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).105C2^2 | 128,907 |
(C2×D8).106C22 = D16⋊4C4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).106C2^2 | 128,909 |
(C2×D8).107C22 = D8⋊8D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).107C2^2 | 128,918 |
(C2×D8).108C22 = D8.9D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).108C2^2 | 128,919 |
(C2×D8).109C22 = D8.10D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).109C2^2 | 128,921 |
(C2×D8).110C22 = D8.4D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).110C2^2 | 128,940 |
(C2×D8).111C22 = D8.5D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).111C2^2 | 128,942 |
(C2×D8).112C22 = D8⋊1Q8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).112C2^2 | 128,956 |
(C2×D8).113C22 = D8⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).113C2^2 | 128,958 |
(C2×D8).114C22 = D8.Q8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).114C2^2 | 128,960 |
(C2×D8).115C22 = (C2×Q8)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).115C2^2 | 128,1745 |
(C2×D8).116C22 = C2×D4.2D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).116C2^2 | 128,1763 |
(C2×D8).117C22 = C42.443D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).117C2^2 | 128,1767 |
(C2×D8).118C22 = C42.19C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).118C2^2 | 128,1778 |
(C2×D8).119C22 = (C2×C8)⋊12D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).119C2^2 | 128,1790 |
(C2×D8).120C22 = (C2×C8)⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).120C2^2 | 128,1793 |
(C2×D8).121C22 = C42.221D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).121C2^2 | 128,1832 |
(C2×D8).122C22 = C42.384D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).122C2^2 | 128,1834 |
(C2×D8).123C22 = C42.225D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).123C2^2 | 128,1837 |
(C2×D8).124C22 = C42.450D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).124C2^2 | 128,1838 |
(C2×D8).125C22 = C42.352C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).125C2^2 | 128,1850 |
(C2×D8).126C22 = C42.353C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).126C2^2 | 128,1851 |
(C2×D8).127C22 = C42.356C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).127C2^2 | 128,1854 |
(C2×D8).128C22 = C42.358C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).128C2^2 | 128,1856 |
(C2×D8).129C22 = C2×C8.12D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).129C2^2 | 128,1878 |
(C2×D8).130C22 = C42.360D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).130C2^2 | 128,1879 |
(C2×D8).131C22 = M4(2).20D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).131C2^2 | 128,1888 |
(C2×D8).132C22 = C42.308D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).132C2^2 | 128,1900 |
(C2×D8).133C22 = C42.366D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).133C2^2 | 128,1901 |
(C2×D8).134C22 = C42.387C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).134C2^2 | 128,1907 |
(C2×D8).135C22 = SD16⋊8D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).135C2^2 | 128,2001 |
(C2×D8).136C22 = SD16⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).136C2^2 | 128,2016 |
(C2×D8).137C22 = Q16⋊12D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).137C2^2 | 128,2017 |
(C2×D8).138C22 = C42.462C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).138C2^2 | 128,2029 |
(C2×D8).139C22 = C42.468C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).139C2^2 | 128,2035 |
(C2×D8).140C22 = C42.471C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).140C2^2 | 128,2054 |
(C2×D8).141C22 = C42.479C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).141C2^2 | 128,2062 |
(C2×D8).142C22 = D4⋊5D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).142C2^2 | 128,2066 |
(C2×D8).143C22 = C42.488C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).143C2^2 | 128,2071 |
(C2×D8).144C22 = C42.490C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).144C2^2 | 128,2073 |
(C2×D8).145C22 = Q8⋊4D8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).145C2^2 | 128,2090 |
(C2×D8).146C22 = C42.501C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).146C2^2 | 128,2092 |
(C2×D8).147C22 = C42.502C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).147C2^2 | 128,2093 |
(C2×D8).148C22 = C42.508C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).148C2^2 | 128,2099 |
(C2×D8).149C22 = C42.527C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).149C2^2 | 128,2125 |
(C2×D8).150C22 = C22×SD32 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).150C2^2 | 128,2141 |
(C2×D8).151C22 = C2×C4○D16 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).151C2^2 | 128,2143 |
(C2×D8).152C22 = C2×Q32⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).152C2^2 | 128,2145 |
(C2×D8).153C22 = C2×M5(2)⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).153C2^2 | 128,878 |
(C2×D8).154C22 = C23.21SD16 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | 4 | (C2xD8).154C2^2 | 128,880 |
(C2×D8).155C22 = C2×D8⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).155C2^2 | 128,1674 |
(C2×D8).156C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).156C2^2 | 128,1675 |
(C2×D8).157C22 = C4×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).157C2^2 | 128,1676 |
(C2×D8).158C22 = C42.275C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).158C2^2 | 128,1678 |
(C2×D8).159C22 = C42.277C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).159C2^2 | 128,1680 |
(C2×D8).160C22 = C42.281C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).160C2^2 | 128,1684 |
(C2×D8).161C22 = (C2×C8)⋊13D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).161C2^2 | 128,1792 |
(C2×D8).162C22 = C42.247D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).162C2^2 | 128,1882 |
(C2×D8).163C22 = C42.255D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).163C2^2 | 128,1903 |
(C2×D8).164C22 = C42.391C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).164C2^2 | 128,1911 |
(C2×D8).165C22 = D8⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 32 | | (C2xD8).165C2^2 | 128,1999 |
(C2×D8).166C22 = C42.495C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).166C2^2 | 128,2086 |
(C2×D8).167C22 = C42.496C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).167C2^2 | 128,2087 |
(C2×D8).168C22 = D8⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).168C2^2 | 128,2116 |
(C2×D8).169C22 = D8⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).169C2^2 | 128,2121 |
(C2×D8).170C22 = C42.533C23 | φ: C22/C2 → C2 ⊆ Out C2×D8 | 64 | | (C2xD8).170C2^2 | 128,2135 |
(C2×D8).171C22 = C2×C4×D8 | φ: trivial image | 64 | | (C2xD8).171C2^2 | 128,1668 |
(C2×D8).172C22 = C4×C4○D8 | φ: trivial image | 64 | | (C2xD8).172C2^2 | 128,1671 |
(C2×D8).173C22 = C42.280C23 | φ: trivial image | 64 | | (C2xD8).173C2^2 | 128,1683 |
(C2×D8).174C22 = D8⋊12D4 | φ: trivial image | 32 | | (C2xD8).174C2^2 | 128,2012 |
(C2×D8).175C22 = D8⋊13D4 | φ: trivial image | 64 | | (C2xD8).175C2^2 | 128,2015 |
(C2×D8).176C22 = Q8×D8 | φ: trivial image | 64 | | (C2xD8).176C2^2 | 128,2110 |
(C2×D8).177C22 = D8⋊6Q8 | φ: trivial image | 64 | | (C2xD8).177C2^2 | 128,2112 |
(C2×D8).178C22 = C2×Q8○D8 | φ: trivial image | 64 | | (C2xD8).178C2^2 | 128,2315 |